The Scurfy mutation of FoxP3 in the thymus stroma leads to defective thymopoiesis

نویسندگان

  • Xing Chang
  • Jian Xin Gao
  • Qi Jiang
  • Jing Wen
  • Nick Seifers
  • Lishan Su
  • Virginia L. Godfrey
  • Tao Zuo
  • Pan Zheng
  • Yang Liu
چکیده

The Scurfy mutation of the FoxP3 gene (FoxP3(sf)) in the mouse and analogous mutations in human result in lethal autoimmunity. The mutation of FoxP3 in the hematopoietic cells impairs the development of regulatory T cells. In addition, development of the Scurfy disease also may require mutation of the gene in nonhematopoietic cells. The T cell-extrinsic function of FoxP3 has not been characterized. Here we show that the FoxP3(sf) mutation leads to defective thymopoiesis, which is caused by inactivation of FoxP3 in the thymic stromal cells. FoxP3 mutation also results in overexpression of ErbB2 in the thymic stroma, which may be involved in defective thymopoiesis. Our data reveal a novel T cell-extrinsic function of FoxP3. In combination, the T cell-intrinsic and -extrinsic defects provide plausible explanation for the severity of the autoimmune diseases in the scurfy mice and in patients who have immunodysregulation, polyendocrinopathy, enteropathy, and X-linked syndrome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homeostatic proliferation in the mice with germline FoxP3 mutation and its contribution to fatal autoimmunity.

FoxP3 has emerged as a critical regulator for the development and function of regulatory T cells. Recent studies by several groups have demonstrated that FoxP3 is expressed outside T cell lineages. In this context, we have reported that germline mutation of FoxP3 caused defective thymopoiesis, although its potential contribution to autoimmune diseases has not been analyzed. In this study, we re...

متن کامل

Severe Developmental B Lymphopoietic Defects in Foxp3-Deficient Mice are Refractory to Adoptive Regulatory T Cell Therapy

The role of Foxp3-expressing regulatory T (T(reg)) cells in tolerance and autoimmunity is well-established. However, although of considerable clinical interest, the role of T(reg) cells in the regulation of hematopoietic homeostasis remains poorly understood. Thus, we analysed B and T lymphopoiesis in the scurfy (Sf) mouse model of T(reg) cell deficiency. In these experiments, the near-complete...

متن کامل

P-90: Maternal Susceptibility to Pre-Eclampsia in South Indian Women: FOXP3 Gene

Background: Pre-eclampsia is a multifactorial pregnancy specific vascular disorder characterized by hypertension and proteinuria. It affects around 3-5% pregnancies worldwide. The aetiology and pathophysiology of PE remain poorly understood. But it is generally accepted defective placentation during the early stage of pregnancy most likely in combination with maternal and environmental factors ...

متن کامل

Role of CD28 in fatal autoimmune disorder in scurfy mice.

Scurfy mice develop CD4 T-cell-mediated lymphoproliferative disease leading to death within 4 weeks of age. The scurfy mutation causes loss of function of the foxp3 gene (foxp3(sf)), which is essential for development and maintenance of naturally occurring regulatory CD4 T cells (nTregs). In humans, mutations of the foxp3 gene cause immune dysregulation, polyendocrinopathy, enteropathy, and X-l...

متن کامل

Full restoration of peripheral Foxp3+ regulatory T cell pool by radioresistant host cells in scurfy bone marrow chimeras.

Mutations in the gene encoding the transcription factor Foxp3 lead to fatal autoimmune pathology in mice and humans, which is associated with a deficiency in Foxp3(+) regulatory T cells (T(reg)). It has also been proposed that Foxp3 inactivation in nonhematopoietic tissues, particularly in thymic epithelium, is required for the pathogenesis, because Foxp3 mutant scurfy bone marrow cells fail to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 202  شماره 

صفحات  -

تاریخ انتشار 2005